THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH3280A Introductory Probability 2023-2024 Term 1
Suggested Solutions of Homework Assignment 4

Q1

(a).

$$
P(X>20)=\int_{20}^{\infty} \frac{10}{x^{2}} d x=\frac{1}{2} .
$$

(b). The cumulative distribution function of X is

$$
\begin{aligned}
F(t) & = \begin{cases}\int_{10}^{t} \frac{10}{x^{2}} d x, & t \geq 10 \\
0, & t<10\end{cases} \\
& = \begin{cases}1-\frac{10}{t}, & t \geq 10 \\
0, & t<10\end{cases}
\end{aligned}
$$

(c). Assume that the lifetimes of the electronic devices are independent. Let Y be the random variable of the number of devices that will function for at least 15 hours. Then Y has a binomial distribution with parameters $n=6$ and p, where

$$
p=P(X \geq 15)=\int_{15}^{\infty} \frac{10}{x^{2}} d x=\frac{2}{3} .
$$

The required probability is

$$
P(Y \geq 3)=1-\sum_{k=0}^{2} P(Y=k)=1-\sum_{k=0}^{2}\binom{6}{k} p^{k}(1-p)^{6-k}=\frac{656}{729} \approx 0.8999 .
$$

Q2

First, note that

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1}\left(a+b x^{2}\right) d x=a+\frac{1}{3} b .
$$

Moreover, we have

$$
\frac{3}{4}=E[X]=\int_{0}^{1} x\left(a+b x^{2}\right) d x=\frac{1}{2} a+\frac{1}{4} b .
$$

By the above two equations, we have $a=0$ and $b=3$,

$$
\begin{gathered}
E\left[X^{2}\right]=\int_{0}^{1} x^{2}\left(0+3 x^{2}\right) d x=\frac{3}{5} \\
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=0.0375
\end{gathered}
$$

Q3

$P(1<X<3)=F(3-)-F(1)=F(3)-F(1)=\left(1-4^{-2}\right)-\left(1-2^{-2}\right)=\frac{3}{16}$.
Next, the expectation is

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{+\infty} x f(x) d x \\
& =\int_{0}^{+\infty} x f(x) d x+\int_{-\infty}^{0} x f(x) d x \\
& =\int_{0}^{+\infty} \int_{0}^{+\infty} \chi_{[0, x]}(t) f(x) d t d x-\int_{-\infty}^{0} \int_{-\infty}^{0} \chi_{[x, 0]}(t) f(x) d t d x \\
& =\int_{0}^{+\infty} \int_{0}^{+\infty} \chi_{[t,+\infty)}(x) f(x) d x d t-\int_{-\infty}^{0} \int_{-\infty}^{0} \chi_{(-\infty, t]}(x) f(x) d x d t \\
& =\int_{0}^{+\infty} \int_{t}^{+\infty} f(x) d x d t-\int_{-\infty}^{0} \int_{-\infty}^{t} f(x) d x d t \\
& =\int_{0}^{+\infty}(1-F(t)) d t-\int_{-\infty}^{0} F(t) d t \\
& =\int_{0}^{+\infty} \frac{1}{(1+t)^{2}} d t \\
& =1
\end{aligned}
$$

Here, let A be a set in the real line where $\chi_{A}(x)$ is defined to be 1 , if $x \in A$, and to be 0 , if $x \notin A$.

Q4

The roots $x_{1,2}=\frac{-4 Y \pm \sqrt{16 Y^{2}+16(Y-6)}}{8}$ are real if and only if

$$
16 Y^{2}+16(Y-6) \geq 0
$$

So we need to find this probability

$$
\begin{aligned}
P\left(16 Y^{2}+16(Y-6) \geq 0\right) & =P(\{Y \geq 2\} \cup\{Y \leq-3\}) \\
& =P(Y \leq-3)+P(Y \geq 2) \\
& =0+\int_{2}^{\infty} \lambda e^{-\lambda x} d x \\
& =e^{-2 \lambda}=e^{-6}
\end{aligned}
$$

Q5

First, we use $A B$ to denote the line segment. Let C be a point randomly chosen in $A B$. Let X be a random variable denoting the length of the line segment $A C$. We can see X is uniformly distributed on $[0, L]$. Also, the event the ratio of the shorter to the longer segment is less than $\frac{1}{4}$ can be represented as

$$
E:=\left\{\frac{X}{L-X}<\frac{1}{4}\right\} \cup\left\{\frac{L-X}{X}<\frac{1}{4}\right\} .
$$

Then

$$
\begin{aligned}
P(E)= & P\left(\left\{X<\frac{1}{5} L\right\} \cup\left\{X>\frac{4}{5} L\right\}\right) \\
& =\int_{0}^{\frac{1}{5} L} \frac{1}{L} d x+\int_{\frac{4}{5} L}^{L} \frac{1}{L} d x \\
& =\frac{2}{5} .
\end{aligned}
$$

Q6

Assume that the annual rainfalls are independent from year to year. Let X be the random variable of annual rainfall. Then $X \sim N\left(40,4^{2}\right)$.

$$
P(X \leq 50)=P\left(\frac{X-40}{4} \leq 2.5\right)=\Phi(2.5) \approx 0.9938
$$

The required probability is $P(X \leq 50)^{10} \approx 0.9397$.

Q7

Denote $\frac{X-12}{\sqrt{4}}$ by Z. Then Z is a standard normal random variable.
$0.1=P\{X>c\}=P\left\{Z>\frac{c-12}{\sqrt{4}}\right\}=1-P\left\{Z \leq \frac{c-12}{2}\right\}=1-\Phi\left(\frac{c-12}{2}\right)$,
where Φ is the cumulative distribution function of the standard normal random variable.
Therefore, $c=2 \cdot \Phi^{-1}(0.9)+12$.

Q8

(a).

$$
P(X>2)=\int_{2}^{\infty} \frac{1}{2} e^{-\frac{1}{2} x} d x=e^{-1}
$$

(b).

$$
\begin{aligned}
P(X \geq 10 \mid X>9) & =\frac{P(\{X \geq 10\} \cap\{X>9\})}{P(X>9)} \\
& =\frac{P(X \geq 10)}{P(X>9)} \\
& =\frac{\int_{10}^{\infty} \frac{1}{2} e^{-\frac{1}{2} x} d x}{\int_{9}^{\infty} \frac{1}{2} e^{-\frac{1}{2} x} d x} \\
& =\frac{e^{-10 / 2}}{e^{-9 / 2}} \\
& =e^{-1 / 2} .
\end{aligned}
$$

Q9

We assume that X is a continuous random variable with density $f(x)$.

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{0}^{k} x^{2} f(x) d x \leq k \int_{0}^{k} x f(x) d x=k E[X] \\
\operatorname{Var}(X) & =E\left[X^{2}\right]-(E[X])^{2} \\
& \leq k E[X]-(E[X])^{2} \\
& =-\left(E[X]-\frac{k}{2}\right)^{2}+\frac{k^{2}}{4} \\
& \leq \frac{k^{2}}{4}
\end{aligned}
$$

Q10

Let $f(x)$ denote the probability density function of a normal random variable with mean μ and variance σ^{2}. Show that $\mu-\sigma$ and $\mu+\sigma$ are points of inflection of this function. That is, show that $f^{\prime \prime}(x)=0$ when $x=\mu-\sigma$ or $x=\mu+\sigma$. Recall that

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Taking the derivative with respect to x twice, we get

$$
f^{\prime}(x)=\frac{-(x-\mu)}{\sqrt{2 \pi} \sigma^{3}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

and

$$
f^{\prime \prime}(x)=\frac{-\sigma^{2}+(x-\mu)^{2}}{\sqrt{2 \pi} \sigma^{5}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Thus $f^{\prime \prime}(x)=0 \Leftrightarrow-\sigma^{2}+(x-\mu)^{2}=0 \Leftrightarrow x=\mu-\sigma$ or $x=\mu+\sigma$, as claimed. So $\mu-\sigma$ and $\mu+\sigma$ are the points of inflection of this function.

Q11

(a). By integration by parts, we have

$$
\begin{aligned}
E\left[g^{\prime}(Z)\right] & =\int_{-\infty}^{\infty} g^{\prime}(x) \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}}\left[g(x) e^{-\frac{x^{2}}{2}}\right]_{-\infty}^{\infty}+\int_{-\infty}^{\infty} x g(x) \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x .
\end{aligned}
$$

Here, we need the additional assumption that

$$
\lim _{x \rightarrow \pm \infty} g(x) e^{-\frac{x^{2}}{2}}=0
$$

Then we have $E\left[g^{\prime}(Z)\right]=E[Z g(Z)]$.
(b). Put $g(x)=x^{n}$, for $n \geq 1$. Note that $\lim _{x \rightarrow \pm \infty} g(x) e^{-\frac{x^{2}}{2}}=0$, so by (a), we have $E\left[g^{\prime}(Z)\right]=E[Z g(Z)]$. Therefore, $E\left[Z^{n+1}\right]=E[Z g(Z)]=$ $E\left[g^{\prime}(Z)\right]=E\left[n Z^{n-1}\right]=n E\left[Z^{n-1}\right]$.
(c). $\operatorname{By}(b)$, we have $E\left(Z^{4}\right)=3 E\left(Z^{2}\right)=3$.

Q12

Let F_{X} and $F_{k X}$ be the distribution of X and $k X$ respectively. Let f_{X} and $f_{k X}$ be the density of X and $k X$ respectively. For $t>0$,

$$
\begin{gathered}
F_{k X}(t)=P(k X \leq t)=P(X \leq t / k)=F_{X}(t / k), \\
f_{k X}(t)=F_{k X}^{\prime}(t)=\frac{1}{k} f_{X}(t / k)=\frac{\lambda}{k} e^{-\frac{\lambda}{k} t .}
\end{gathered}
$$

For $t<0, F_{k X}(t)=0$ and $f_{k X}(t)=0$. Hence, $k X$ is an exponential random variable with parameter λ / k.

